Improving System Security via Proactive Password Checking

Matt Bishop

Department of Computer Science
University of California at Davis
Davis, CA 95616-8562
bishop@cs.ucdavis.edu
+1 603 646 3267

Danid V. Klein

LoneWolf Systems, Inc.
133 Lanford Drive
Pittsburgh, PA 15235-1856
dvk@lonewolf.com
+1 412 242 5245

ABSTRACT

As the Internet has grown, its user community has changed from a small tight
knit group of researchers to a loose gathering of people on a global network. The
amazing and constantly growing numbers of machines and users ensures that
untrustworthy individuals have full access to that network. High speed inter-machine
communication and even higher speed computational processors have made the threats
of system “crackers”, data theft, data corruption very real. This paper outlines some
of the problems of current password security by demonstrating the ease by which indi-
vidual accounts may be broken. Various techniques used by crackers are outlined, and
finally one solution to this point of system vulnerability, a proactive password checker,
is documented.

1. Introduction

The security of accounts and passwords has always been a concern for the developers and users of
UNIXT systems. When UNIX was younger, the password encryption algorithm was a simulation of the
M-209 cipher machine used by the U.S. Army during World War Il [Morris1979]. This was a fair
encryption mechanism in that it was difficult to invert under the proper circumstances, but suffered in
that it was too fast an algorithm. On a PDP-11/70, each encryption took approximately 1.25ms, so that
it was possible for a password cracker to check roughly 800 passwords/second. Armed with a diction-
ary of 250,000 words, a cracker could compare their encryptions with those all stored in the password
file in a litle more than five minutes. Clearly, this was a security hole worth filling.

In later (post-1976) versions of UNIX, the DES algorithm [DES1975] was used to encrypt passwords.
The user’s password is used as the DES key, and the algorithm is used to encrypt a constant (usually a
string of nulls). The algorithm is iterated 25 times, with the result being an 11 character string plus a
2-character “salt.” This method is very difficult to reverse (further complicated through the introduc
tion of one of 4096 possible salt values) and had the added advantage of being slowuMVBAX4dl (a

machine substantially faster than a PDP-11/70), a single encryption took on the order of 280ms, so tha

T This work was sponsored in part by the U.S. Department of Defense.
T UNIX is a trademark of Bell Laboratories.

a determined cracker could only check approximately 3.6 encryptions a second. Checking this sam
dictionary of 250,000 words now took over I®urs of CPU time. Although this is still not very much

time to break a single account, there was no guarantee that this account would use one of these word
as a password. Checking the passwords on a system with 50 accounts would take on average 40 CPU
days (since the random selection of salt values practically guarantees that each user’'s passward will b
encrypted with a different salt), with no guarantee of success. If this new, slow algorithm was com-
bined with the user education needed to prevent the selection of obvious passwords, the problem
seemed solved.

Two recent developments and the recurrence of an old one have brought the problem of password secu-
rity back to the fore.

1) CPU speeds today are substantially faster than in 1976, so much so that readily obtainable
and easily affordable processors are 25-100 times faster than the VAXen targeted by th
““new” password encryptions. The DECstation 3100 and Sparc 1 used in the password
cracking research were considered very fast machines 5 years ago. They have, like the tor
toise of fable, been sped past with newer machines that are more than 10 times their speed.
With inter-networking, many sites have hundreds of individual workstations connected
together, and enterprising crackers are discovering that the “divide and conquer” algorithm
can be extended to multiple processors, especially at night when those processors are no
otherwise being used. Literally thousands of times the computational power of 10 years
ago can be used to break passwords.

2) New implementations of the DES encryption algorithm have been developed, so that the
time it takes to encrypt a password and compare the encryption against the value stored in
the password file has dropped below the 1ms mark [Bishop1988, Feldmeier1989]. On a sin-
gle workstation, the dictionary of 250,000 words can once again be cracked in well unde
five minutes. By dividing the work across multiple workstations, the time required to
encrypt these words against all 4096 salt values could be no more than an hour or Bo. Wit
a recently described hardware implementation of the DES algorithm, the time for each
encryption can be reduced to approximately$[Leong1991]. This means that this sam
dictionary could be cracked in only 1.5 seconds.

3) Users are rarely educated as to what are wise choices for passwords. If a passwad is in
dictionary, it is extremely vulnerable to being cracked, and users are simply not coached as
to “safe” choices for passwords. Of those users who are so educated, many think that sim
ply because their password is not imst/dict/words, it is safe from detection. Many users
also say that because they do not have any private files on-line, they are not concerned with
the security of their account, little realizing that by providing an entry point to the system
they allow damage to be wrought on their entire system by a malicious cracker.

Because the entirety of the password file is readable by all users, the encrypted passwords are vulner-
able to cracking, both on-site and off-site. Many sites have responded to this threat with a reactive
solution — they scan their own password files and advise those users whose passwords they are able to
crack. The problem with this solution is that while the local site is testing its security, the password fil

is still vulnerable from the outside. The other problems, of course, are that the testing is very time con-
suming and only reports on those passwords it is able to crack. It does nothing to address user pass
words which fall outside of the specific test cases (e.g., it is possible for a user to use as a password the
letters “qwerty” — if this combination is not in the in-house test dictionary, it will not be detectet, bu
there is nothing to stop an outside cracker from having a more sophisticated dictionary!).

Clearly, one solution to this is to either malatc/passwd unreadable (a simple solution which nonethe
less breaks many legitimate tools), or to make the encrypted password portion of the file unreadable.

T The problem of lack of password security is not just endemic to UNIX. A recent Vax/VMS worm had great suc-
cess by simply trying the username as the password. Even though the VMS user authorization file is inaccessible to or
dinary users, the cracker simply tried a number of “obvious” password choices — and easily gained access to numerous
machines.

-3-

Splitting the file into two pieces — a readabktc/passwd with all but the encrypted password present

and a ‘“shadow password” file that is only readable by root is the solution proposed by Sun Microsys-

tems (and others) that appears to be gaining popularity. It seems, however, that this solutiort will no

reach the majority of non-Sun systems for quite a while, nor even, in fact, many Sun systems, due to
many sites’ reluctance to install new releases of software.

What this paper proposes, therefore, ipraactive password checker, which will enable users to change
their passwords, and to cheekpriori whether the new password is “safe” from cracking. The crieri

for safety are tunable on a per-site basis, depending on the degree of security desired. For example, it
is possible to specify a minimum length password, a restriction that only lower case letterstare no
allowed, that a password that looks like a license plate be illegal, and so on. Because this proactive
checker deals with the passwords in the clear (that is, before they are encrypted), it is able to perform
more sophisticated pattern matching on the password, and is able to test the safety of a password
without having to go through the effort of cracking the encrypted version. Because the chexking i
done automatically every time a user attempts to change his or her password, the process of education
can be transferred to the machine, which will instruct the we®r a particular choice of password i

bad.

2. Password Vulnerability

It has long been known that all a cracker need do to acquire access to a UNIX machine is to follow
two simple steps:

1) Acquire a copy of that site’sefc/passwd file, either through an unprotectedicp link, well
known holes insendmail, via ftp or tftp, or other overt and covert means.

2) Apply the standard (or a sped-up) version of the password encryption algorithm to a collec-
tion of words, typically dsr/dict/words plus some permutations on account and user names
and compare the encrypted results to those found in the purloatepassnd file.

If a match is found (and usuallgt least one will be) [Klein1990], the cracker has access to the tar
geted machine. This mode of attack has been known for some time [Morris1979] [Spafford1988], and
the defenses against this attack have also long been known. How well sites protect themselves from th
various modes of attack varies greatly from site to site. The publicly available proactive checker
described in this paper will enable sites to protect themselves from a variety of attacks by providing a
single “silver bullet” to address the many vulnerabilities.

2.1. The Survey and Initial Results

In late 1989, a number of site administrators cooperated in a study in password security. They submit-
ted their copies ofetc/passwd for cracking, yielding a total of nearly 14,000 account entries. Eédch o

the entries was tested by a number of guessing strategies — the possible passwords that were tested were
based on the user's name or account number, taken from numerous dictionaries (including some con
taining foreign words, phrases, patterns of keys on the keyboard, and enumerations), and from permuta-
tions and combinations of words in those dictionaries.

After over 3 CPU years of rather exhaustive testing, approximately 40% of the passwords had been
guessed. This represents the combined computing horsepower of 35 Sparc-2 workstations operating i
parallel. In the first week, approximately 21% (nearly 3,000 passwords) were guessed ssigtea
DECStation 3100 workstation; in fact, in the very first 15 minutes of testing, 458 passwords (or 3.2%
had been cracked using what experience has shown would be the most fruitful line of agaaksing

the user or account names as passwords). All told, 30 root accounts were compromised. These statis
tics are frightening, and well they should be. On an average system with 50 accounts in the
letc/passwd file, one could expect the first account to be cracked in under 2 minutes, with 5-15
accounts being cracked by the end of the first day. Even though the root account may not be cracked,
all it takes is one account being compromised for a cracker to establish a toehold in a system. Once
that is done, any of a number of other well-known security loopholes (many of which have been pub-
lished on the network) can be used to access or destroy any information on the machine.

It should be noted that the results of this testing do not give us any indication as to whaictheked
passwords are. Rather, it only tells us what was essentially already known — that users are likely to use
words that are familiar to them as their passwords [Riddle1989]. What new information it did provide
however, was thalegree of vulnerability of the systems in question, as well as providing a basis for
developing a proactive password changer — a system which pre-checks a password before it is entered
into the system, to determine whether that password will be vulnerable to this type of attack. Pass-
words which can be derived from a dictionary are clearly a bad idea [Alvare1988], and users should be
prevented from using them. Of course, as part of this censoring process, users should alsonbg told
their proposed password is not good, and what a good class of password would be.

2.2. Passwords to Avoid

A number of techniques were used on the accounts in order to determine if the passwords used for them
were able to be compromised. Because any self respecting cracker would also try these tests, the
should be checked in a proactive password changer. The password cracking tests were as follows:

1) The user’'s name, initials, account name, and other relevant personal information. All in all
up to 130 different passwords were tried based on this information. For an account name
klone with a user named “Daniel V. Klein,” some of the passwords that would be tried
were: klone, klone0O, klonel, klonel23, dvk, dvkdvk, dklein, DKlein, leinad, nielk, dvklein,
danielk, DvkkvD, DANIEL-KLEIN, enolk, ENOLK, KleinD, etc.

2) Words from various dictionaries. For our research, these included lists of first and last
names names (some 35,000 in all); places (including permutations so that “spain,” “span-
ish,” and “spaniard” would all be considered); names of famous people; cartoons and car-
toon characters; titles, characters, and locations from films, science fiction stories and Shak
espeare; mythical creatures (garnered from Bulfinch’s Mythology and dictionaries of mythi-
cal beasts); sports (including team names, nicknames, and specialized terms); numbers (both
as numerals — “2001,” and written out — “twelve”); strings of letters and numbers (“a,”
“aa,” “aaa,” “abab,” etc.); the King James Bible; biological terms; common and vulga
phrases (such as “fuckyou,” “ibmsux,” and “deadhead”); keyboard patterns (such as
“qwerty,” “asdf,” and “zxcvbn”); abbreviations (such as “roygbiv’ — the colors in the
rainbow, and “ooottafagvah” — a mnemonic for remembering the 12 cranial nerves);
machine names (acquired fromtd/hosts); common Yiddish words; the names of asterpids
a collection of words from various technical papers, recipes, and scripts; foreign language
dictionaries (including Chinese, Dutch, French, German, Greek, Italian, Norwegian, and
Swedish). All told, more than 650,000 separate words were considered per user (with any
inter- and intra-dictionary duplicates being discarded). All these dictionaries are gublicl
available from various sites across the Internet.

3) Various permutations on the words from step 2. These included making the first lette
upper case or a control character, making the entire word upper case, reversing the word
(with and without the aforementioned capitalization), capitalizing random letters, clgangin
the letter ‘0’ to the digit ‘0’ (so that the word ‘“scholar” would also be checked as
“schOlar”), changing the letter ‘I' to the digit ‘1’ (so that “scholar” would also be checked
as “scholar,” and also as “sch0lar”), and performing similar manipulations to change the
letter 'z’ into the digit ‘2’, and the letter ‘s’ into the digit ‘5’. Another test was to make th
word into a plural and add the suffixes “-ed,” “-er,” and “-ing” to transform words like
“phase” into “phases,” “phased,” “phaser,” and “phasing.”

4) Word pairs. The magnitude of an exhaustive test of this nature is staggering. To simplify
this test, only words of 3 or 4 characters in length fromsr/dict/words were examined
Even so, the number of word pairs @(10”) (multiplied by 4096 possible salt values), but
despite this magnitude, this line of attack was surprisingly fruitful

The problem with using passwords that are derived directly from obvious words is that when a user
thinks “Hah, no one will guess this permutation,” they are almost invariably wrong. Who would eve
suspect that we would find their passwords when they chose “fylgjas” (guardian creatures from Norse
mythology), or “pataitai” (the Chinese word for “hen-pecked husband”)? No matter what words o

-5-

permutations thereon are chosen for a password, if they exatyiron-line dictionary, they are suscep
tible to directed cracking. The following two tables give an overview of the types of passwords which
were found (out of a sample set of 13,892 accounts) through this research.

Distribution of Cracked Passwords by Type
Type of Password Number Successfully Cracked Percentage
Account/User Name 458 3.2%
Numbers 100 0.7%
Character Combinations 93 e743]
Names 1003 7.2%
Permuted Names 195 e
Words 2128 15.3%
Permuted Words 1331 9.5%
Foreign Words 111 0.7%
Permuted Foreign Words 106 Q67
Total 5525 39.7%
Length of Cracked Passwords
Length Count Percentage
1 character 9 0.1%
2 characters 7 0%
3 characters 91 1.6%
4 characters 307 356
5 characters 415 7.5%
6 characters 1957 354
7 characters 1306 23.6%
8 characters 1433 2598
Total 100.0%

As to those passwords which remain unbroken, we can only conclude that these are much mere secur
and “safe” than those to be found in our dictionaries and permutations. One such class of passwords is
punctuated word pairs, where a password consists of two short words, separated by a punctuation char
acter. Even if only words of 3 to 5 lower case characters are considergdi¢t/words provides 3000

words for pairing. When a single intermediary punctuation character is introduced, the samplé size o
90,000,000 possible passwords is rather daunting. On a Sparc 2, testing each of these passwords against
that of a single user would require over 25 CPU hours — and even then, no guarantee exists that this is
the type of password the user chose. Introducing one or two upper case characters into the password
raises the search set size to such magnitude as to make cracking untenable.

Another “safe” password is one constructed from the initial letters of an easily remembered, but not
too common phrase. For example, the phrase “UNIX is a trademark of Bell Laboratories” could give
rise to the password “UiatoBL.” This essentially creates a password which is a random string of upper
and lower case letters. Exhaustively searching this list at 1000 tests per second with only 6 characte
passwords would take nearly 230 CPU days. Increasing the phrase size to 7 character passwords makes
the testing time over 32 CPWears — a Herculean task that even the most dedicated cracker with huge
computational resources would shy away from.

Thus, although we don’t know what passwords were chosen by those users we were unable to crack, we
can say with some surety that it is doubtful that anyone else using this dictionary-based technique could
crack them in a reasonable amount of time, either.

3. Action, Reaction, and Proaction

What then, are we to do with these results? Clearly, something needs to be done to safeguard the secu-
rity of our systems from attack. It was with intention of enhancing security that this study was under
taken. By knowing what kind of passwords users use, we are able to prevent them from using those

-6 -

that are easily guessable (and thus thwart the cracker)

One approach to eliminating easy-to-guess passwords is to periodically run a password checker — a pro-
gram which scansefc/passwd and tries to break the passwords in it [Raleigh1988, Muffett1992]. This
approach has two major drawbacks. The first is that the checking is very time consuming. Even a sys-
tem with only 100 accounts can take over a month to diligently check. A halfhearted check ig almos
as bad as no check at all, since users will find it easy to circumvent the easy checks and still have
vulnerable passwords. The second drawback is that it is very resource consuming. The machine which
is being used for password checking is not likely to be very useful for much else, since a fast password
checker is also extremely CPU intensive.

Another popular approach to eradicating easy-to-guess passwords is to force users to change their pass-
words with some frequency. In theory, while this does not actually eliminate any easy-to-guess pass
words, it prevents the cracker from dissectimr/passwd “at leisure,” since once an account is bro-

ken, it is likely that that account will have had it's password changed. This is of course, only .theory
The biggest disadvantage is that there is usually nothing to prevent a user from changing their password
from “Daniel” to “Victor” to “Klein” and back again each time the system demands a new pass
word. Experience has shown that even when this type of password cycling is precluded, users are
easily able to circumvent simple tests by using easily remembered (and easily guessed) passwords such
as “dvkJanuary”, “dvkFebruary”, etc. [Reid1989] A good password is one that is easily remembered,

yet difficult to guess. When confronted with the choice between remembering an easily guessed pass-
word and creating one that is hard to guess, users will almost always opt for the easy way out, and
throw security to the wind.

Which brings up a third popular option, namely that of assigned passwords. These are often words
from a dictionary, pronounceable nonsense words, or random strings of characters. The problems here
are numerous and manifest. Words from a dictionary are easily guessed, as we have seen. Pronounce-
able nonsense words (such as “trobacar” or “myclepate”) are often difficult to remember, and random
strings of characters (such as “h3rT+aQz”) are even harder to commit to memory. Because these pass-
words have no personal mnemonic association to the users, they will often write them down to aid in
their recollection. This immediately discards any security that might exist, because now the password is
visibly associated with the system in question. It is akin to leaving the key under the door mat,-or writ
ing the combination to a safe behind the picture that hides it.

A fourth method is the use of “smart cards.” These credit card sized devices contain somefform o
encryption firmware which will “respond” to an electronic “challenge” issued by the system onto
which the user is attempting to gain acccess. Without the smart card, the user (or cracker) isanable t
respond to the challenge, and is denied access to the system. The problems with smart cards have noth-
ing to do with security, for in fact they are excellent warders for your system. The drawbacks tare tha
they can be expensive (about $25.00 per user plus an initial setup fee) and must be carried at all times
that access to the system is desired. They are also a bit of overkill for research or educational, systems
or systems with a high degree of user turnover.

Clearly, then, since all of these systems have drawbacks in some environments, an additional way must
be found to aid in password security.

4. Overview of A Proactive Password Checker

The best solution to the problem of having easily guessed passwords on a system is to prevent them
from getting on the system in the first place. If a program such as a password chesdtetby detect

ing guessable passwords already in place, then although the security hole is found, the hole existed for
as long as it took the program to detect it (and for the user to again change the password). If, however
the program which changes user’'s passwoids, (/bin/passwd) checks for the safety and guessability
before that password is associated with the user’s account, then the security hole is never put in place.

Such a proactive password checker must meet seven criteria:

1) The tests for the password must always be invoked. Otherwise, the tests may be bypassed and
weak password installed on the system. (Most UNIX system password changing programs fail
this test, as after three tries weak passwords are allowed [URM1986]).

2)

3)

4)

5)

6)

The checker must be able to reject any password in a set of common passwords, or vehich is
transformation of common passwords. Among the permutations detected in this experiment that
such a requirement would eliminate are passwords which:

e Exactly match a word in a dictionary e
(not just in the system dictionary)

e Match a reversed word in a dictionary e
(with or without capitalization)

Match a word in a dictionary with
some or all of the letters capitalized
Match a word in a dictionary with an
arbitrary letter turned into a coniro
character

Are shorter than a certain length.g(,

all passwords shorter than six charac-
ters are disallowed)

e Match a dictionary word with the e
letters ‘o0’, ‘I', ‘Z', and ‘s’ replaced by
the numbers ‘0’, ‘1’, ‘2’, and ‘5’

e Do not contain mixed upper and lower
case, or mixed letters and numbers, o
mixed letters and punctuation

This allows words in a dictionary to be eliminated. This requirement alone would eliminate pass-

word cracking if one checked proposed passwords against the dictionary used by attackers. O
course, the problem is acquiring a comprehensive enough dictionary; many large dictionaries are
available, but there is no guarantee these have every character sequence that an attacker may try.

The checker must allow per-user discrimination in its tests. Among the permutations detected in
this experiment that such a requirement would eliminate are passwords based on the user’s:

e Account name ° Given name or initials

However, some people have certain associations which may lead to passwords which ace easy t
guess; for example, the string “HeidiTu™ is a fairly obvious guess for the first author’'s password
(as his daughter is named “Heidi Tumiel”) but the apostrophe makes it an unlikely guess fo
someone else. This suggests allowing dictionaries to be selected on a per-user basis as well.

The checker must allow per-site discrimination in its tests. In some sense, any checker allow
this as it can be modified and recompiled. However, the principle of psychological
acceptability [Saltzer75] implies that modifying a set of tests be less cumbersome; so, a
configuration file best implements this requirement. This allows the system administrator to turn
on certain tests, and modify or disable others (such as the minimum acceptable length for a pass
word).

The checker should have a pattern matching facility that can be used in tests. As indicated
above, not all bad password choices will be in dictionaries; for example, repetitions of logi
names typically are not. One could construct a dictionary containing such repetitions, but it is far
simpler to describe these by patterns. Such a facility would eliminate passwords which:

e Are based on repetitions of the user'se
account name
e Consist solely of numeric characterse

Are based on repetitions of the user’s
initials or given name
Are patterns from the keyboard.€,

(i.e., Social Security numbers, tele
phone numbers, house addresses or
office numbers)

e Look like a state-issued license plate.

“aaaaaa” or “gwerty”)

Note this last example brings in a site dependency (specifically, where the site is located geo-
graphically).

The checker should be able to run subprograms and use the results in tests. This is particularly
useful for eliminating passwords which are:

-8-

e Simple conjugations of a dictionary ¢ Made up of two words put together
word (.e, plurals, adding “ing” o (i.e., “hithere”, “goodbye”, etc)
“‘ed” to the end of wordsgtc.)
e Common misspellings of dictionary
words (.e, “stoping” as well &
‘‘stopping”, “bananna” as well as
“banana”, etc.)

The subprogram facility has other uses. For example, it can also be used to check for passwords
based on local host names.

7) The tests should be easy to set up. If writing a test is a very complex and error-prone procedure,
administrators will pick only simple tests which may not help much. As a general principle
security mechanisms should not require much effort to use because if it is not psychologically
acceptable the mechanism will either be unused or misused.

As distributed, the behavior of the proactive checker should be that of attaining maximum password
security — with the system administrator being able to turn off certain checks. It would be desimeable t
be able to test for and reject all password permutations that were detected in the research described in
section 2 (and others).

The configuration file which specifies the level of checking need not be readable by users. In fact,
making this file unreadable by users (and by potential crackers) enhances system security by hiding a
valuable guide to what passwordee acceptable (and conversely, which kind of passwords simply can-
not be found).

Of course, to make this proactive checker more effective, it would be necessary to provide the dic-
tionaries that were used in this research (perhaps augmented on a per-site basis). Even mere impor
tantly, in addition to rejecting passwords which could be easily guessed, the proactive password changer
would also have to tell the usahy a particular password was unacceptable, and give the user sugges
tions as to what an acceptable password looks like.

5. Example of A Proactive Checker

The proactive password checkawrcheck, a part of thepasswd+ password changing program, provides
facilities to meet these requirements. It uses a “little language” to encode tests to determine if a pass
word is too easy to guess. Whenever a password is supplied it runs these tests, and if any test evaluates
to the password is rejected and the user told why the password is unacceptable.

5.1. Configuration File

The heart ofpwcheck is the configuration file, which contains commands to set and evaluate variables
and tests to determine if the proposed password is too easy to guess. The tests are composed of expres
sions, which are in turn made up of constants, variables, and functions. When a user enters a password,
it can be stored in a variable. All variables contain strings, and several forms of assignment exist.

When pwcheck starts, it automatically sets several variables to values obtained from the user informa-
tion stored in étc/passwd, and from the host:

Predefined User- and Host-Related Variables
variable value

user user (account) name

uid user identification numbe

gid (primary) group identification number

gecos user information

homedir home directory

shell user’s login sheél

host host name (no domain)

domain (internet) domain name, if @n

fgdn (internet) fully qualified domain name

nisdomain NIS domain name, if any

Pwcheck also sets several other variables from information gleaned about the password

Predefined Password-Related Variables
variable value

p proposed password

newpwd same as p

curpwd current password (if knoyn

newhash hash of proposed password

curhash hash of current password

newsalt salt used to obtain newhash

cursalt salt used to obtain curhash

Values may be assigned to variables using control lines like
setvar system "windsor.dartmouth.edu"”

which assigns to system the string “windsor.dartmouth.edu”. As a string is a sequence of
alphanumeric characters (including underscore), an escaped character, or a quoted string, in this assign
ment, the quotes are needed because setvar assigns the first string following the name of the variable to
the variable. Without the quotes, system would be assigned the value “windsor”. The variabke var i
referenced using the notation $(var); if the variable name is 1 character long, the parentheses can be
omitted.

Setvar statements do not evaluate the quantity being assigned. To do so, the evalvar assignment state-
ment is needed. For example, the function first(s, t) takes two strings s and t as arguments, and returns
the numerical position of the first character in s that is also in t. The function substr(s, b, e) returns the
substring of s beginning at character position b and ending at character position e (inclusivej. So, i
system contains “windsor”, the function

substr($(system), 1, first($(system), "."))} 1

evaluates to “windsor”; but saying
setvar hostname substr($(system), 1, first($(system), ".") - 1)

simply assigns the string “substr($(system), 1, first($(system), ".") - 1)” to hostname. The asstgnmen
evalvar hostname substr($(system), 1, first($(system), ".") - 1)

will evaluate the functions and assign the result “windsor” to the variable

Finally, one can extract substrings based on pattern matching. Suppose the user information for the
user Bishop is stored in the variable G as “Matt Bishop,107 Raven House,3267”. The control line

setpat "$G" "W, T\ TR, NCAN$” user off ext

assigns “Matt Bishop” to the variable user, “107 Raven House” to the variable office, and “3267" t
the variable ext. Note that the second quoted string uses the pattern matching operator “\(" and “\)”

-10 -

to return that part of the string matched by the pattern between those operators. However, when that
string is read, the backslashes would be interpreted as escapes for the parentheses and discarded. So
the backslashes must have an escape character, \, put in front of them to prevent them from being dis-
carded. Put another way, the first backslashes are escapes; the second are part of the operators.

A number of functions are available for writing the tests. Rather than describe each one individually,
we present and discuss the tests that would detect types of passwords identified as too easy to guess in
this study and inHighland92, Muffett1992, andFrisch9l. In what follows, the password would be con-
sidered easy to guess if the expression evaluates to true (non-zero) and not easy to guess if the expres
sion evaluates to false (zero). Also, we shall assume the variable user contains the user’'s login
(account) name, p the proposed password, f, m, | the user’s first, middle, and last names respectively;
his or her initials, via:

evalvar i Icase(substr($f,1,1)) \
Icase(substr($m,1,1)) Icase(substr($l,}L,1)
and that any dictionaries in use are nandédionary .
1) Passwords based on the user’'s account name.

Here we check for three of the variations described in section 2.2(1); extensions to other varia-
tions are straightforward.

"$p" == """ "$user" "$"
"$p" =" "™ prot("$user”) "[0-9]+$
"$p" =" """ prot("$user”) ".$"

Those characters which are not operators are quoted so that the checker will interpret them as part
of a string; the variables are quoted because substitution is done before the line is parsed. The
operator “=="is the comparison operator, and the operator “="" matches the string on the left
with the pattern on the right. The function prot(s) scans the string s looking for metacharacters
meaningful to the pattern matcher; it returns the string s with the appropriate escapes inserted so
that s is interpreted as a string. (So, for example, if s contained “he.I*o0”, prot(s) wouldnretur
“he\.*0”, as “.” and *“*” represent “any character” and “0 or more repetitions of the previ-

ous character”, respectively). The function Icase(s) returns the string s with all upper case letters
made lower case. Placing strings next to one another concatenates them; so if the user’s name
were “Bishop”, these three expressions would be

"$p" == ""Bishop$"
"$p" =" "Bishop[0-9]+$
"$p" =~ ".Bishop.$"

The first matches the login name; the second matches any occurrence of the login name followed
by 1 or more digits; and the third, the login name surrounded by single characters on eitder end.

2) Passwords based on the user’s initials or given name.
Again, here we show the tests for the 10 of the variations described in section 2.2(1):

"$p" =" "\(" S "\)*$"

"$p" == substr($f,1,1) 3

"$p" == fcase(substr($f,1,1)) fcase)($!

"$p" == rev(fcase($f))

"$p" == rev(fcase($l))

"$p" == fcase(substr($f,1,1)) fcase(substr($m,1,1)) fcase($l)

Tt The astute UNIX user will realize that this pattern matcher uses the GNU pattern matching language. The GNU
mechanism is used here because its patterns are shorter than the equivalent patterns written for the BSD ®F System
pattern matchers; howevepwcheck also supports the BSD pattern matcher (with some extensions), and the System V
pattern matcher (if available on the system). This means system administrators or programmers need not fearn a ne
pattern-matching language to write tests.

3)

4)

5)

6)

7)

-11 -

"$p" == fcase($f) fcase(substr($,1,1))
"$p" == fcase($i) rev(fcase($i))

"$p" == ucase($f) "-" ucase($l)

"$p" == "$I" ucase(substr($f,1,1))

Suppose the user’'s given name is "Matthew A. Bishop"; then f contains “Matthew”, m contains
“A.”, | contains “Bishop”, and i contains “mab”. The first line returns 1 if the password is 0

or more repetitions of the initials, using the pattern-match operator “="". The second line
returns 1 if the password is “MBishop”; notice the operator is now “==", which tests for equal
ity. The third line returns 1 if the password is “mbishop”; the fourth, if the password is “weht-
tam” (the function rev(s) reverses the string s); the fifth, if the password is “pohsib”; the sixth, i
the password is “mabishop”; the seventh, if the password is “matthewb”; the eighth, if the pass-
word is “MabbaM”; the ninth, if the password is “MATTHEW-BISHOP”; and the tenth, if the
password is “BishopM”. Obviously many more permutations are possible.

Passwords which exactly match a word in a dictionary (not just system.ones)
If the dictionary is an unsorted file with one word per line, the expression
infile("$p", dictionary)
returns 1 if the value of the variable p is one of the lines of the file. If the dictionary’s lines are
sorted in ascendingscl order, the binary search function
inbinfile("$p", sort dictionary)

is considerably faster. Finally, the database may be stored in a format enabling very rapid
searches; a function is provided to take advantage of this. Note that each of these function
search the file directly rather than by using a subcommand, both for speed and to avoid making
the proposed password visible to other processes.

Passwords which match a reversed word in the dictionary.
This is the same as asking if the reversed password is in the dictionary

infile(rev("$p"), dictionary)

Passwords which match a word in the dictionary with some or all letters capitalized.

Here, we just treat all characters as lower-case. If the password, with all letters lower case

appears in a version of the dictionary with all letters lower case, we want the expression to evalu-

ate to 1. The simplest way to do this is to use the subcommand execution facility:
inprog(lcase("$p"), "tr A-Z a-x dictionary")

The tr (1) command is executed and each line of output is compared to the lower case password
If any are equal, the expression evaluates to 1. (As an efficiency measure, storing the dictionary
words in lower case eliminates the need for using

Passwords which match a reversed word in the dictionary with some or all letters capitalized.
This is just like the previous expression, but the password is reversed:

inprog(rev(lcase("$p")), "tr A-Z a-x dictionary")
Passwords which match a word in a dictionary with an arbitrary letter turned into a contrel char

acter.

Here, we simply change all control characters in the password to their letter equivalent. (We
could implement this expression exactly by looking for the first control character and using that
then the second, and so on, but that is much more complicated as the little language has no itera-
tion function.) We then compare the results to the dictionary, as before:

infile(trans("$p", controls, "A-Z[\\|""), dictionary)

In the little language, the distinguished constant controls is a string of all control character

8)

9)

10)

11)

12)

13)

-12 -

exceptasci NUL (which is used as a string terminator)
Passwords which match a dictionary word with the following translations,
either alone or in various combinations: 4*1’, ‘0’ -'0’,'s’ - '5’, 'z’ - ‘2™ Here we simply giwe
some examples, as there are 15 transformations possible:
infile(trans("$p", "0125", "olzs"), dictionary)
infile(trans("$p", "02", "0z"), dictionary)
infile(trans("$p", "012", "olz"), dictionary
infile(trans("$p", "15", "Is"), dictionary)
Passwords which are simple conjugations of a dictionary wiced (

plurals, adding “ing” or “ed” to the end of the word, etc.)." This type of password is really just
a part of speech; the simplest way to look for it is to use the spelling checker. If the word is
incorrectly spelled, it will be printed to the output gbell (1); otherwise, nothing is printed and

no check is performed:

linprog("$p", "spell -h /dev/null", "$p")

This says to run the program spell (1), giving it as input the password (the second $p). If the
password (the first $p) is in the output, the expression evaluates to O (the ‘*!"’ negates the value
of the function). At no time is the input placed on a command line, so the above test would not
reveal the password even to a process status list.

Passwords which are patterns from the keyboaed (‘aaaaaa” or “qwerty”).

This can best be done by building a dictionary of such sequences. Note that a dictionary ca
contain patterns; for example, to eliminate all sequences of repeated characters, place a line con-
taining the pattern “\(.\)\(\1\)*” in the dictionary, and use the function filepat:

filepat("$p", patternfile)

This returns true 1 if the password matches any pattern in the file patternfile (which has one pat-
tern per line). Note only one backslash is needed in the pattern because when the file containing
the pattern is read, each line is treated as a complete pattern; it is not broken into strings.

Passwords which are shorter than a specific lerigth fothing shorter than six characters)
The function length returns the length of a string:

length("$p")< 6
evaluates to 1 when the password is shorter than 6 characters.

Passwords which consist solely of numeric characiexs $ocid

Security numbers, telephone numbers, house addresses or office nhumbers)." A pattern can best
describe this type of password:

"$p" = "[0-O]+$"

Passwords which do not contain mixed upper and lower case, or mixed
letters and numbers, or mixed letters and punctuation." Expressions to look for these use the arith
metic and logical operators in tests:

lismixed("$p")| nnotalphas("$p") 0

The operator * is the logical “or” operator. This expression has a value of 1 for all passwords
without mixed case (lismixed), or which do not have some non-alphabetic character (nnotalphas)
A better form of this expression would evaluate to 1 for any password which does not contain at
least one alphanumeric:

nnotalnums("$p"» 0

-13-

14) Passwords which look like a state-issued license plate

The formats of license plate numbers vary from state to state (a good example of why per-site
discrimination is needed). In New Hampshire, license plates for cars are either 4, 5, or 6 digits
or three letters followed by three digits:

"$p" =" "[0-9]{4,6}$" |"$p" =" "[A-Za-z){3}[0-9]{3}$ "
In Pennsylvania, autombile license plates are three letters followed by 3-4 digits:
"$p" =" "[A-Za-z){3}[0-9]{3,4}$"

15) Passwords made up of 2 words.

The function mwords returns 1 if its first argument can be split into two strings both of which are
in the dictionary named in its second argument. For example, the expression
mwords("hithere","/usr/dict/words™) returns 1 as “hi” and “there” are both in the file
/usr/dict/words. The expression to use is simply:

mwords("$p", "/usr/dict/words")

5.2. Tests and Associated Controls

Expressions are used in tests to determine if a password is too easy to guess. Associated with the tests
are statements to be printed if the test succeeds (to inform the user why the password is being,rejected)
if it fails (to inform the user of the criteria passed), if the user asks for help (for educational purposes),
and error handlers (as the test may use an unavailable resource, such as a dictionary not present on the
system)..

As an example, consider the requirement that all passwords be at least 7 characters long and not be in
the system dictionary:

test length

test

eval length("$p")< 7

iftrue "Your password is too shdrt

iffalse "Your password is long enough"

help "Your password must be at least 7 characters"long
endtest

test for in the dictionary

test

eval infile("$p", "/usr/words/dict")

onerror true

iferror "Could not access /usr/dict/words -- try again later"
iftrue "Your password is in the dictionary"

iffalse "Your password is not in the dictionary"

help "Your password must not be in the dictionary (use non-alphanurnierics)
endtest

The first line in the first test block says that the expression is to be evaluated and if it evaluates to true
(nonzero), the password is to be rejected. If the password stored in the variable p is “aardvark”, th
expression will evaluate to true. If the test is true, the message on the next line beginnirifnvéehs

printed; if false, the message on the next line beginning vifddse is printed. In this case, the mes

sage “Your password is long enough” will be printed. Had the password been “hello”, the test
expression would evaluate as false, and the alternate message “Your password is too short” would be
printed. The next linehelp, contains a string to be printed when the program is run in help mode.

The next block shows how to check for words in a dictionary. The expression irvdieline is
evaluated; the password “aardvark” would be found in the dictionary, rejected, and the message “Your
password is in the dictionary” would be printed. If an error occurs (because “/usr/dict/words”tis no
available, for instance), the message “Could not access /usr/dict/words -- try again later” will be

- 14 -

printed. The line containing “onerror true” says to treat an error condition as though the test evaluated
true, (and so the proposed password would be rejected). In an error condition, however, the’ “iftrue’
message would not be printed.

Consider instead the password fp:r”. It (most likely) is not in the dictionary because it contains
characters other than a letter or digit. Doing the lookup can take quite a bit of time, though. Because
the expression language uses lazy evaluation of “&&” arlt] the test could be rewritten as

eval nalnum("$p") == length("$p") && infile("$p", "/usr/dict/words")

If the first part were false,i.e. the password contains non-alphanumeric characters), then the second
(the dictionary lookup) will not be evaluated.

The true, false, error, and iferror controls apply to the test block in which they appear only (system
defaults are provided if they are absent). The default block overrides these, and remain in fdrce unti
changed by another such block:

default tests and actisn

default

onerror tre

iftrue "The password is too easy to guess"

iferror "An error occurred; contact the system administrator

help "Use mema#234 to guide you in selection of your password"
enddefault

Finally, if the test block contains only the test (an eval line), the block can be collapsed into a single
line by putting the test on the same line as test. So,

test
eval length("$p")< 2
endtest

and
test length("$p")x 2

do exactly the same thing.

5.3. Miscellaneous Controls

Several miscellaneous controls tailor the expression evaluation and configuration files as desired. The
pattern matcher used above is the GNU pattern matcher; if one were more familiar with the Berkeley
pattern matcher (which is the same as the Version 7 pattern matcher), one could use that by having a
line of the form

pattern bsd4

at the top of the configuration file.

Secondly, UNIX passwords are truncated at eight characters; so if the password is “ambiguouslexir”,
this could be guessed (since “ambiguous” is in the system dictionary, and the two words have the
same first 8 letters. So, the control line

complen 8

forces all string comparisons to stop after the first 8 characters. Note this does not affect pattern
matching, because the length of the pattern may depend upon the string being matched (for exam-
ple, if the partial string match operators are used).

54. Summary

The proactive password checkpwcheck offers facilities of enough power to detect those passwords
which are likely to be guessed easily. As with any measure that seeks to counter a threat, the changing

-15-

nature of the dictionaries used to guess passwords means that no proactive checker can prevent all pass
words from being guessed; however, experience with the predecespactwdck has shown the use of

such a checker, combined with sufficiently powerful rules, does lessen the success of attackers
compromising passwords.

6. Conclusion (and Sermon)

It has often been said that “good fences make good neighbors.” On a UNIX system, many users also
say that “l don’t care who reads my files, so | don’'t need a good password.” Regrettably, leaving a
account vulnerable to attack is not the same thing as leaving files unprotected. In the latter case, all
that is at risk is the data contained in the unprotected files, while in the former, the whole system is a
risk. Leaving the front door to your house open, or even putting a flimsy lock on it, is an invitation to
the unfortunately ubiquitous people with poor morals. The same holds true for an accouns$ that i
vulnerable to attack by password cracking techniques.

While it may not be actually true that good fences make good neighbors, a good fence at least help
keep out the bad neighbors. Good passwords are equivalent to those good fences, and a proactive
checker is one way to ensure that those fences are in pkioee a break-in problem occurs.

References

Morris1979
Robert T. Morris and Ken Thompson, “Password Security: A Case HistoBgihmunications of
the ACM, vol. 22, no. 11, pp. 594-597, November 1979.

DES1975
“Proposed Federal Information Processing Data Encryption Standaftkteral Register
(40FR12134), March 17, 1975.

Bishop1988.
Matt Bishop, “An Application of a Fast Data Encryption Standard Implementatid@ofmputing
Systems, vol. 1, no. 3, pp. 221-254, Summer 1988.

Feldmeier1989.
David C. Feldmeier and Philip R. Karn, “UNIX Password Security — Ten Years Lat€RYPTO
Proceedings, Summer 1989.

Leong1991
Philip Leong and Chris Tham, “UNIX Password Encryption Considered Insecut$SENIX
Winter Conference Proceedings, January 1991.

Klein199Q
Daniel V. Klein, ““Foiling the Cracker” — A Survey of and Improvements to UNIX Password
Security,” Proceedings of the USENIX Security Workshop, Summer 1990.

Spafford1988.
Eugene H. Spafford, “The Internet Worm Program: An Analysis,” Purdue Technical Report
CSD-TR-823, Purdue University, November 29, 1988.

Riddle1989
Bruce L. Riddle, Murray S. Miron, and Judith A. Semo, “Passwords in Use in a University
Timesharing Environment,’Computers & Security, vol. 8, no. 7, pp. 569-579, November 1989.

Alvare1988
Ana Marie De Alvare and E. Eugene Schultz, Jr., “A Framework for Password Selection,”
USENIX UNIX Security Workshop Proceedings, August 1988.

Raleigh1988.
T. Raleigh and R. Underwood, “CRACK: A Distributed Password AdvisotJSENIX UNIX
Security Workshop Proceedings, August 1988.

Muffett1992.
Alec Muffett, Crack, 1992. Available via anonymoup from cert.org.

- 16 -

Reid1989.
Dr. Brian K Reid, DEC Western Research Laboratory, 1989. Personal communication.
URM1986.
UNIX User’'s Reference Manual, 4.3 Berkeley Software Distribution -11 Version, Computer Sci-
ence Research Group, Department of Electrical Engineering and Computer Science, University o
California, Berkeley, CA, April 1986.

Saltzer75.
Jerome Saltzer and Michael Schroeder, “The Protection of Information in Computer Systems,”
Proceedings of the IEEE, vol. 63, no. 9, pp. 1278-1308, September 1975.

Highland92
Harold Joseph Highland, “Random Bits and Bytes: Testing a Password Systeomputers and
Security, vol. 11, no. 2, pp. 110-113, April 1992.

Muffett1992.
Alec Muffett, Crack, 1992. Available for anonymousp from cert.org.

Frisch91.
Aeleen FrischEssential System Administration, O'Reilly and Associates, Sebastopol, CA, 1991.

